eRD18 - Precision Central Silicon Tracking & Vertexing for the EIC

FY19 midterm report

P. Allport, L. Gonella, <u>P. Jones</u>, P. Newman, H. Wennlöf

eRD18: Proposal

To develop a detailed concept for a central silicon vertex detector for a future EIC experiment, exploring the potential advantages of fully <u>depleted</u> MAPS (DMAPS) technologies

Science drivers

Open heavy flavour decays – **high position resolution**Precision tracking of high Q² scattered electrons – **low mass**

WP1: Sensor Development

Exploit on-going R&D in Birmingham into depleted MAPS to investigate potential solutions for the EIC

WP2: Silicon Detector Layout Investigations

Performance requirements: numbers of layers, layout and spatial resolution of the pixel hits

Background: State-of-the-art MAPS

- Starting point is the ALICE ALPIDE sensor (MAPS)
 - Partially depleted; charge collection in part by drift
 - Small collection electrode = low detector capacitance

ALPIDE sensor

- 0.18 μm CMOS standard TowerJazz (TJ) process
- 28 x 28 μm² pixel pitch
- <2 μs time resolution
- Power density < 50 mW cm⁻²
- 50 kHz interaction rate (Pb-Pb)
- 200 kHz interaction rate (pp)
- Future is fully depleted MAPS (DMAPS)

CERN-TJ investigator

- 0.18 μm CMOS *modified* TowerJazz (TJ) process
- 20 x 20 μm² to 50 x 50 μm² pixel matrices
- Small collection electrodes
- Simple follower-based analogue readout
- Fully depleted sensor

WP1: Sensor development

- Towards an EIC-specific DMAPS sensor
 - Aim for improved spatial resolution
 - Smaller pixels (20 x 20 μm² seems sufficient)
 - Low mass detector layers (< 0.3% X/X₀ low power)
 - Consider readout requirements for the EIC
 - Integration time and time-stamping capability
- Technology identified: TowerJazz modified process
 - Deep planar junction allows full depletion with small collection electrode
 - Enables small pixels, low noise, and low power
- Preliminary specifications for EIC-specific DMAPS sensor
 - Based on technology investigations and survey of state-of-the-art DMAPS prototypes
 - Presented at the July meeting

WP1: EIC-specific DMAPS specifications

- Preliminary specifications
 - Pixel pitch ≤ 20 μm
 - Interaction rate = 500 kHz
 - Integration time ≤ 2 μ s
- To minimise power
 - Small collection electrode
 - Asynchronous readout
- Fast-timing capability
 - Timestamp each bunch crossing
 - Depends on facility
 - eRHIC = 112.6 MHz
 - JLEIC = 748.5 MHz
 - 10 ns 1 ns resolution

	EIC DMAPS Sensor		
Detector	Vertex and Tracking	Outer Timing Layer	
Technology	TJ or similar		
Substrate Resistivity [kOhm cm]	1		
Collection Electrode	small		
Detector Capacitance [fF]	<5		
Chip size[cm x cm]	Full reticule		
Pixel size[um x um]	20 x 20	TBD	
Integration Time [ns]	2000	2000	
Particle Rate [kHz/mm²]	TBD		
Readout Architecture	Asynchronous	TBD	
Power [mW/cm2]	<10		
NIEL [1MeV n _{eq} /cm ²]	10^10		
TID [Mrad]	<10		
Noise [e-]	TBD		
Fake Hit Rate [hits/s]	TBD		
Interface Requirements	TBD		
		<9 (eRHIC)	
Timing Resolution [ns]	N/A	<1 (MEIC)	

Updated specifications (includes initial specs for power density)

WP1: TJ Investigator Chips

- TJ Investigators provide test structures
 - Can be used to study the charge collection properties and detection efficiency of different pixel layouts
- Each chip has 134 matrices of 10 x 10 pixels
 - Variables are pixel pitch, electrode size and electrode spacing

Pixel: 28 x 28 μm² Electrode: 2 x 2 µm² Electrode spacing: 3 µm Available pixel matrices 0-35: 20 x 20 μm² 22 x 22 μm² 36-57: 25 x 25 μm² 58-67: 28 x 28 μm² 68-103: 104-111: $30 \times 30 \mu m^2$

112-123: 40 x 40 μm² 124-133: 50 x 50 μm² Electrode sizes $1-5 \mu m^2$

Electrode spacing 1-5 μm typically (except 50 x 50 μm² pixels in TJ1)

- Three different versions available: TJ1, TJ1b, TJ2
- Improved charge collection in TJ1b and TJ2
 - Separate bias for p-substrate and the p-well (TJ1b and TJ2)
 - Reduced electrode spacing for 50 x 50 μm² pixels (TJ2)
 - Faster readout capability (TJ2)

WP1: Experimental setup and testing

- Setup development to test TJ1b and TJ2
 - The p-well and p-substrate are biased independently
 - Reset signal provided externally by an Arduino microcontroller
 - Readout done using a DRS4 USB oscilloscope
- Current tests focus on TJ1b to investigate effect of increased bias
 - 55Fe source test on 28 x 28 μm² pixel

WP1: Signal amplitude test with TJ1b

- Amplitude increases with higher bias voltage → gain change
 - Points to larger depletion with higher bias voltage
 - Leads to a change in detector capacitance

Bias voltages	K _α peak [mV]	K_{α} width [mV]	K _β peak [mV]	K _β width [mV]
PWELL: -6 V, HV: -6 V	56.72 ± 0.03	1.06 ± 0.02	62.13 ± 0.05	1.37 ± 0.04
PWELL: -6 V, HV: -12 V	59.05 ± 0.03	1.24 ± 0.03	65.03 ± 0.07	1.59 ± 0.10
PWELL: -6 V, HV: -15 V	61.11 ± 0.05	1.17 ± 0.04	67.00 ± 0.07	1.44 ± 0.07

Further investigations ongoing to understand decrease of Κ_α peak

WP1: Rise time test with TJ1b

- Find slower rise time with wider distribution for higher bias voltages
 - Points to larger depleted volume at higher bias voltage
 - More charge being collected further away from the collection electrode

Bias voltages	Rise time [ns]	Distribution width [ns]
PWELL: -6 V, HV: -6 V	24.34 ± 0.09	2.87 ± 0.07
PWELL: -6 V, HV: -9 V	25.95 ± 0.09	2.97 ± 0.08
PWELL: -6 V, HV: -12 V	27.52 ± 0.12	3.94 ± 0.10
PWELL: -6 V, HV: -15 V	29.42 ± 0.17	4.89 ± 0.12

Further investigations to verify change in depletion volume with HV

Study using eTCT measurements and TCAD simulations

WP1: Rise time distributions with TJ1b

PWELL -6 V, HV -15 V

- Double-peak structure observed with higher substrate bias.
- Implies that new regions are depleted with higher bias.

WP1: DMAPS prototype study

- Feasibility study into the design of an EIC specific DMAPS sensor
 - Starting from the initial specifications
 - Study trade off between pixel size and power density
 - Provide realistic constraints to the detector performance studies
- Work defined with chip designer at RAL
 - First explore most demanding requirements
 - One sensor capable of both tracking/vertexing and time stamping
 - If pixel size and/or power is out of specification
 - Revert to two different chips for tracking/vertex and timing
 - The study will have two phases: pixel design, readout architecture
 - Preliminary design review held on Jan 10th; initial specifications agreed
 - Information required: global occupancy, local occupancy, cluster size
 - Ready to start, pending contract setup at UoB

WP1: Workplan for the next 6 months

- Technology investigation
 - Complete comparison of TJ1, TJ1B, TJ2
 - In addition to source measurement, perform edge-TCT tests
 - TCAD simulations to verify results
- EIC specific DMAPS study
 - Depending on start date, complete phase 1: pixel design and possibly phase 2: readout architecture
- Possible alternative technology investigation for timing layer
 - Single-photon avalanche diode (SPAD)
 - p-n junction biased beyond breakdown voltage
 - Incident particle triggers breakdown, giving a fast signal with high gain
 - Advantages: small pixels, fast timing, high signal gain
 - Disadvantages: slow recovery after avalanche, poor radiation hardness
 - Not necessarily a problem for application at an EIC
 - Prototype from RAL available for testing

was the

WP2: Layout simulations

- Parameters used in the barrel simulations:
 - Pions, $0 \le p_T \le 5$ GeV/c, $|η| \le 0.5$, B = 1.5 T
 - Timing layer 1.6% X/X₀, various pixel sizes
- Parameters used in the disk simulations:
 - Electrons, $\eta = 3$, $0 \le p \le 50$ GeV/c, B = 3 T
 - Benchmark our results with eRD16

WP2: Barrel timing layer, pixel size study

- Pions, $0 \le p_T \le 5$ GeV/c, $|η| \le 0.5$
- 4-layer BeAST tracker, plus timing layer
- Timing layer pixel size does <u>not</u> affect detector performance

enormance

WP2: Forward disks, comparison with eRD16

Relative Momentum Resolution

- Electrons, $\eta = 3$, $0 \le p \le 50$ GeV/c, B = 3T.
- Different pixel sizes simulated in a 7-disk configuration.
- eRD18 used EicRoot, eRD16 used a fast simulation package.
 - Upturn at low momentum due to scattering in the beampipe?
 - Possible difference in data analysis?
 - Further investigation required.

WP2: Forward disks, innermost disk position

- Electrons, $\eta = 3$, $0 \le p \le 50$ GeV/c, B = 3T.
- Innermost disk moved, while remaining disks fixed
- Best resolution observed 250 mm from interaction point
 - At closer distances, particles at η = 3 miss the innermost disk

20

- Inner disk radius is at r = 18 mm in the simulations

Momentum [GeV/c]

WP2: Workplan for the next 6 months

- Study tracking and vertexing in the barrel-disk interface region
 - Relative momentum resolution
 - Transverse and longitudinal pointing resolution
 - D⁰ mass resolution
- Work with eRD16 to find the best barrel-disk configuration

eRD18: Summary

- WP1: Sensor development
 - Finish characterisation of the modified TJ 180 nm CMOS process
 - Extend source tests with eTCT measurements
 - Explore chip design and readout options with designers at RAL
- WP2: Layout simulations
 - Explore trade offs in the interface region between barrel and disks

white the